Extensions 1→N→G→Q→1 with N=M4(2) and Q=C22

Direct product G=NxQ with N=M4(2) and Q=C22
dρLabelID
C22xM4(2)32C2^2xM4(2)64,247

Semidirect products G=N:Q with N=M4(2) and Q=C22
extensionφ:Q→Out NdρLabelID
M4(2):1C22 = D4:4D4φ: C22/C1C22 ⊆ Out M4(2)84+M4(2):1C2^264,134
M4(2):2C22 = D4.9D4φ: C22/C1C22 ⊆ Out M4(2)164M4(2):2C2^264,136
M4(2):3C22 = C2xC8:C22φ: C22/C2C2 ⊆ Out M4(2)16M4(2):3C2^264,254
M4(2):4C22 = C2xC8.C22φ: C22/C2C2 ⊆ Out M4(2)32M4(2):4C2^264,255
M4(2):5C22 = D8:C22φ: C22/C2C2 ⊆ Out M4(2)164M4(2):5C2^264,256
M4(2):6C22 = D4oD8φ: C22/C2C2 ⊆ Out M4(2)164+M4(2):6C2^264,257
M4(2):7C22 = D4oSD16φ: C22/C2C2 ⊆ Out M4(2)164M4(2):7C2^264,258
M4(2):8C22 = C2xC4.D4φ: C22/C2C2 ⊆ Out M4(2)16M4(2):8C2^264,92
M4(2):9C22 = C2xC4wrC2φ: C22/C2C2 ⊆ Out M4(2)16M4(2):9C2^264,101
M4(2):10C22 = C42:C22φ: C22/C2C2 ⊆ Out M4(2)164M4(2):10C2^264,102
M4(2):11C22 = C2xC8oD4φ: trivial image32M4(2):11C2^264,248
M4(2):12C22 = Q8oM4(2)φ: trivial image164M4(2):12C2^264,249

Non-split extensions G=N.Q with N=M4(2) and Q=C22
extensionφ:Q→Out NdρLabelID
M4(2).1C22 = D4.8D4φ: C22/C1C22 ⊆ Out M4(2)164M4(2).1C2^264,135
M4(2).2C22 = D4.10D4φ: C22/C1C22 ⊆ Out M4(2)164-M4(2).2C2^264,137
M4(2).3C22 = D4.3D4φ: C22/C1C22 ⊆ Out M4(2)164M4(2).3C2^264,152
M4(2).4C22 = D4.4D4φ: C22/C1C22 ⊆ Out M4(2)164+M4(2).4C2^264,153
M4(2).5C22 = D4.5D4φ: C22/C1C22 ⊆ Out M4(2)324-M4(2).5C2^264,154
M4(2).6C22 = Q8oD8φ: C22/C2C2 ⊆ Out M4(2)324-M4(2).6C2^264,259
M4(2).7C22 = C2xC4.10D4φ: C22/C2C2 ⊆ Out M4(2)32M4(2).7C2^264,93
M4(2).8C22 = M4(2).8C22φ: C22/C2C2 ⊆ Out M4(2)164M4(2).8C2^264,94
M4(2).9C22 = C2xC8.C4φ: C22/C2C2 ⊆ Out M4(2)32M4(2).9C2^264,110
M4(2).10C22 = M4(2).C4φ: C22/C2C2 ⊆ Out M4(2)164M4(2).10C2^264,111
M4(2).11C22 = C8oD8φ: C22/C2C2 ⊆ Out M4(2)162M4(2).11C2^264,124
M4(2).12C22 = C8.26D4φ: C22/C2C2 ⊆ Out M4(2)164M4(2).12C2^264,125

׿
x
:
Z
F
o
wr
Q
<